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Long Short-Term Memory-Based Rainfall-Runoff Modeling:
Advancing Insights into Catchments Functional Complexity in North America
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Complexity Rainfall-Runoff processes:
The interaction of catchment attributes such as climate,
geology, topography, and land cover, intricately shapes
the complexity of hydrological processes (Wu et al.,

2021).
Research Gap:

There's a need for deeper insight into how particular

catchment attributes affect the complexity and

performance of deep learning rainfall-runoff models

like LSTM.

Which catchment attributes most

impact the complexity of streamflow

predictions in North American
catchments, and to what degree?

Methodolog

Data Acquisition

USA Catchments:
CAMELS dataset

Environment
Setup: Python

1 Canadian Catchments: | libraries (pandas,

. 1. EMDNA: numpy),
Temperature, TensorFlow,
Precipitation Keras, Scikit-learn

2. ERAS-Land: PET

Daily Inputs:
mean_temperature_C,
precipitation_mmd,

pet_mmd Dataset Creation:

Time series

structuring, input-
output sequence
formation

20 static inputs:
Catchment Attributes,
Soil Properties, Climatic
Factors, Seasonal
Dynamics

The Water Cycle

Figure 1 - The Water Cycle
Diagram (Sitterson et al., 2018)

Results: Predictive Accuracy
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LSTM shows median
testing NSE of 0.74 in
1100 catchments of
North America.

In 25% of cases, NSE
is under 0.59 (Q25).
The best 25% (Q75)
achieve over 0.83

Choosing LSTM:

- Have been successfully
used in rainfall runoff tasks
(Kratzert et al., 2018)

- Adept at considering both
long-term and short-term
relationships between inputs
and outputs. (Kratzert et al.,
2018)
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Figure 2 - LSTM (Nifa et al., 2023)

a

o ?
|
H
i
i
'
i
i
'

5 H

Results: Monthly NSE Distribution

Monthly NSE Distribution
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Seasonal hydrological
processes significantly
influence the temporal
behavior of median NSE
values on a monthly
basis

Management Insight:
Recognizing months with
reduced predictive accuracy
guides risk strategies,
adjusting reliance on model
forecasts based on NSE
trends

Significance of Catchment Attributes
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Features

Climatic features majorly
affect accuracy; mean
slope is key among
non-climatic factors

Catchment attributes'
interplay creates variability:
in predictive NSE
(functional complexity)

Uncertainty of impact: Static catchment attributes frequently
display significant uncertainty, challenging our ability to
determine their impact on hydrological functionality.

Data Noise and Quality Issues: Real-world climatic data
often exhibit noisy behavior, such as autoregressive noise,
complicating simulations.
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